Chapter 9

188
Complexity is intimidating: Some beautiful brain tractography here.
188
The truly exciting prospect: Much as our view of another familiar phenomenon, peptic ulcers, radically changed with the discovery that most are caused by bacterial infection. See PubMed Health, “Helicobacter Pylori,” http://goo.gl/2Ou1wn.
188
It’s worth a look: David Van Essen’s circuit diagram of the visual system, UCSD Neurosciences.
188
this conflict poses a challenge: For another approach to this challenge, look here.
188
It is very hard to write well: A figure reproduced on many quality websites (it can be seen here on Medline Plus: https://goo.gl/jwIsNF) illustrates the concern. It mixes basic anatomical facts, such as the locations of the major lobes, with simplistic assignments of functions to specific areas (e.g., Wernicke’s) and one pure fiction: there is no “reading comprehension area.”
189
A good theory: Putnam (1972).
189
forty-three major anatomically distinguishable: Quick introduction, McGill University, The Brain, http://goo.gl/udSioK.
189
modern Brodmann map: Glaser et al. (2016). For a video about the study, see “The Ultimate Brain Map,” https://www.youtube.com/watch?v=UHDfvfYCY0U.
190
tuberculosis in the literature: As discussed in Susan Sontag’s classic Illness as Metaphor (Sontag 1978).
191
The late Oliver Sacks: “I am a clinical ontologist, one for whom the diagnostic question is: How are you? How do you be?” Sacks as quoted by Lawrence Weschler, “A Rare, Personal Look at Oliver Sacks’s Early Career,” Vanity Fair, April 28, 2015. In the same article, Weschler writes, “[Sacks] respects facts, he tells me, and he has a scientist’s passion for precision. But facts, he insists, must be embedded in stories. Stories—people’s stories—are what really have him hooked.”
192
found that she regularized: Marlene Behrmann (personal communication).
194
We then developed models: The first-generation model: Seidenberg & McClelland (1989); the second-generation model with division of labor: Plaut et al. (1996).
194
The impairment is due: Hodges et al. (1992). The cause is usually Pick’s disease, a type of frontotemporal dementia.
194
Also as predicted: Patterson et al. (2006).
195
Responding with a word: Funnell (1983).
196
One patient was reported: Saffran & Marin (1977).
197
David Plaut, Tim Shallice, and Geoff Hinton: Hinton, Plaut, & Shallice (1993) is an accessible and entertaining overview.
199
As a British neurologist noted: Leff (2004).
201
“pure alexia” is not pure: Behrmann, Nelson, & Sekuler (1998). This type of lesion would also affect an illiterate’s performance on such tasks.
203
Connections from areas in the temporal lobe: Presenting the components in this way omits crucial facts that are hard to diagram: that there are feedback in addition to feedforward connections, which create much more complex neural dynamics, and that the functions of the parts depend on and are changed by each other because they are interconnected.
203
“Language” was located: My colleague Tim Rogers has pointed out that language may have been situated beneath the eyes because of a patient with a language impairment who also exhibited exophthalmos, the eye-bulging symptom of Graves’ disease.
203
visual word form area is one: Behrmann & Plaut (2013).
204
The evolutionary story: Caramazza & Mahon (2003).
204
Swiss army knife: Pinker (2003).
204
increasingly sophisticated methods: Behrmann & Plaut (2013).
205
Spelling gets routed: On Stanislaus Dehaene’s neuronal recycling hypothesis, see Dehaene (2010).
205
study of eighty patients: Hillis et al. (2005).
205
processing of visual word forms: For a case study of a patient who could read following surgical excision of the VWFA, see Seghier et al. (2012).
205
it is activated by objects: Price & Devlin (2003).
206
study of nonimpaired readers: Mano et al. (2012).
206
More sensitive methods: Cox, Seidenberg, & Rogers (2015).
206
other brain areas also respond: McCandliss, Cohen, & Dehaene (2003).
206
More recently Behrmann and Plaut: Behrmann & Plaut (2013).
206
The term “visual word form area”: Sandak et al. (2004) referred to it as a “skill zone,” but the term is perhaps too general.
208
Holmes nearly said to Watson: “You could not possibly have come at a better time, my dear Watson,” he said cordially. Arthur Conan Doyle, “The Red-Headed League,” East of the Web.
208
subjects are quicker: Ziegler & Ferrand (1998).
209
The experiment was then repeated: Stoeckel et al. (2013).
209
The technique may seem odious: A British journalist experiences TMS: “Michael Mosley Has Areas of His Brain Turned Off. The Brain: A Secret History. BBC Four,” video uploaded to YouTube by BBC, December 24, 2010, https://www.youtube.com/watch?v=FMR_T0mM7Pc. Some methods of applying the stimulation improve rather than interfere with performance.
209
Signatures of developmental reading impairments: For recent reviews, see Peterson & Pennington (2012); Pennington & Bishop (2009); Goswami (2015).
210
The effect is to interfere: Turkeltaub et al. (2003).
210
poorer performance on visual tasks: The visual deficit hypothesis is discussed in the reviews I’ve cited here.
210
Suggestive evidence is emerging: Yeatman et al. (2012).
210
Visual impairments may be: This evidence in no way validates “visual training” programs sold by optometrists and others as treatments for reading difficulties. Anomalies in these white matter tracts may be the source of the noisy visual processing in the Sperling et al. (2005, 2006) experiments.
211
The initial left hemisphere: Hoeft et al. (2011).
211
The global impact of these conditions: Rueckl et al. (2015).
211
The product of the newer: Ashkenazi et al. (2013) summarize structural brain anomalies associated with reading and math impairments.
212
Two studies have reported: Several studies have reported changes in white matter in dyslexics following short-term interventions. The findings are suggestive, but see Bishop (2013) for a clear-eyed assessment.
212
increases in white matter volume: Myers et al. (2015).
212
The brain research is converging: Pugh et al. (2014).
213
Migration errors produce ectopias: See Peterson & Pennington (2012). For neural migration explained, with animations, see “Research Interests,” Rakic Lab, http://rakiclab.med.yale.edu/research. The occurrence of migration errors in dyslexia was discovered in the 1980s by neurologist Albert Galaburda, who conducted postmortem studies of the brains of dyslexics who had recently died. Now, decades later, structural anomalies can be observed, using structural neuroimaging, in dyslexics who are very much alive. See Galaburda et al. (2006) for the story of this research.
214
behavioral measures could provide: Robin Morris (Georgia State University) described this use of behavioral and imaging data in a meeting of the scientists involved in a large project on dyslexia and comorbid conditions that he leads (June 24, 2016).